999999之间,大概能传输11.7KB的数据。
康驰现在相当好奇,在吞了足足405万经验,又有了神秘的新元素加入,它的寿命提升到底有多大。
接下来,就是见证奇迹的时候了!
“量子纠缠关系检测中……”
“纠缠关系成功建立。”
“纠缠寿命检测中……”
看着屏幕上疯狂跳动的探测次数,康驰心里也忍不住捏了把汗……
咦?
康驰很快就从屏幕上的数据上,发现了这台装置的第一个技术提升。
之前光镊的探测速度是每秒69次,完成99万次探测大概需要大概四个小时,而升级后的光镊每秒的探测次数高达6万次,整整提升了870倍!
康驰不禁暗叹了句:系统牛逼!
更快的光镊探测速度,意味着更低的延迟和更快的数据传输速度。
或者在带宽和延迟基本满足需求的情况下,也可以选择适当减少光镊数量,从而降低每一颗量子通讯芯片的体积。
嗯,也不对,
如果纠缠量子的寿命足够长,根本量子通讯芯片根本就用不着上亿对纠缠量子!
可能仅仅只需要用4-8对纠缠量子,就满足基本的通讯,这时候每对纠缠量子对应的,其实就是传统网线里的一根线芯。
其实在计算出870倍的数字的那一刻,康驰除了感叹系统的牛逼之外,也猜到这台捕捉器中光镊探测技术的大致突破方向。
或者说突破方向之一。
之前康驰觉得量子通讯芯片0.1ms的延迟完全不符合量子通讯的逼格,同时为了提升带宽,所以不信邪地还尝试过对暂时‘满级’的量子通讯芯片设计改良方案,其中一个方案就是参考传统硬盘。
在传统硬盘技术中,读取数据的磁头是保持不动的,它读取和写入的速度很大程度取决于磁盘的转速。
因此康驰就觉得奇怪,为啥系统升级后的量子通讯球采用的方案是旋转光镊,而不是量子壳?
通过康驰的计算,如果让量子壳像硬盘的磁片一样以7200MR的速度转动起来,光镊的读取速度将提升87倍,恰好是现在升级后的十分之一。
这也是康驰大致猜到它技术升级的原因。
只不过他那次的尝试最终失败了。
因为量子通讯想要进行信息传递,要对量子连续进行多次探测才能保证准确率,而想要
本章未完,请点击下一页继续阅读!